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A method based on the dynamic theory of elasticity is proposed for solving the 
three-dimensional problem of supersonic wedging a body by a thin arrow-shapedblade. 
Using appropriate scale transformation and passing to limit ("the microscope princ- 
iple" /l/j, the problem of the thin blade is reduced to that of the mathematical. 
slit. A solution in closed form is obtained in the case of dependence of displace- 
ments, or of some differential transform of these, on two self-similar variables. 
The input problem is reduced by a change of coordinates to the determination of 
analytic functions of two complex variables which, after some transformations, re- 
duces to the Dirichlet boundary value problem in a single complex variable, which 
is solvable by conventional methods. 

Problems of thin supersonic blades in an elastic body /2/ are of interest in investiga- 
tions of supersonic cutting and in the theory of electron and laser fracturing of solids. 
Problems of the supersonic punch moving on a surface also belong to problems of supersonic 
fracturing. Theoretically all these problems have a general solution which is, however, very 
difficult to obtain with the use of integral representations /3/. 

1. Statement of the problem. Let an infinite thin blade -mathematicalslitinthe 
plane x,, x,-symmetric about the X,-axis move in an elastic body along the ~3 -axis at 
constant supersonic velocity V> c) > c, (c, and cz are velocities of longitudinal and trans- 
verse elastic waves, respectively). Angle b of the arrow-shaped blade tip (or the coeffic- 
ient y = etg fi) is constant and contained within the cone of characteristics (Fig.l),i.e. the 
condition 

y > iLI, ~ M, (Mj’ = V”/Cj’ - 1 > 0 (i = 1, 2)) 

is satisfied. The problem is assumed symmetric relative to the plane ~1%. 
Equations of the dynamic theory of elasticity in displacements /3/ are used here as 

governing equations. In the steady-state problem they are in the moving system of coordinat- 
es x = I,, y = z2, 2, = ta - Vt of the form 

~+q+?4j~~ (j=1,2) 
a%lj (1.1) 

rot uI = 0, div IQ = 0 (1.2) 

where u = u1 + uz is the total displacement vector, and vectors u1 and u2 define, respectiv- 
ely,the dilatationandshear wave displacements. 

According to Hooke's law 

Utf = 21"Eki + ii&i; 2E&, = +,t + Z+,t, E = Uk,lr (1.3) 

where um (k,i = r,y,z) are components of the stress tensor, and hand p are Lam& constants. 
The basic equations (l.lf-- (1.3) remain valid after the substitution for u of function 

v i- Lu which represent linear transformsof the displacement field (L is some linear differ- 
ential operator), and of the respective substitutions 

Ekl.-+ L%. Glk + LO!&. 

Let us consider the self-similar three-dimensional problems of supersonic arrow-shaped 
blades (a particular case of the general problem of the supersonic cone) whose respective sol- 
utions (for instance displacements) depend only on the two self-similar variables 

E = xlz, 7-j = ylz 
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Fig.2 

Fig.1 

Problems in which displacements u are homogeneous functions of J,~.z of zero measure /4/ and, 

also, problems in which functions v - LO (for instance the velocity vector of medium) are 

homogeneous, belong to this type. The approach developed here for three-dimensional problems 

is similar to methods of the theory of functions of complex variables in plane static /5/, 

steady-state dynamic /6/, and dynamic /4/ problems of the theory of elasticity. 

Let us solve the problems formulated below. 

Problem A. The displacements are homogeneous functions of E and q. The boundary 

conditions in the system of coordinates syz are of the form 

u, = g, (s/z), Uy = gv Wz), s, = gz W) for lx I Q - z/y, y = 0, z < 0 (1.4) 

ufx = ujy =uj2=O(j=1,2) for x2 $- y2 > ZzIMj2, Z < 0 and all z>o (1.5) 

UI = uy = u, = 0 for ) 5 I > - z/y, y*= 0, z < 0. (1.6) 

where Us, uy, uz are Cartesian coordinates of the displacement vector U, g,. gV and graregiven 

functions of argument 5 = xlz, and conditions (1.5) indicate the boundaries of perturbed re- 

gions and limit solutions to displacements free of discontinuities at these boundaries. Con- 

ditions (1.6) have the meaning of conditions of symmetry which ensure the homogeneity of 

solutions, and are similar to the usual but weaker conditions of equilibrium (absenceofstress 

discontinuity at the slit). Such conditions obtain, for instance, when a piecewise-homogene- 

ous body is split along the interface of the elastic and absolutely rigid part of a body, or 
in the case of thin blades with arrow-shaped tips of large apex angle (close to that of the 

cone of characteristics). 

Problem B. Functions v = Lu (linear transform) are homogeneous functions of E and 

1\* Since the boundary conditions coincide with (1.4)- (1.6) of Problem A, except for the 

substitution u--, v, hence the two problems differ only in their mechanical aspects, i.e. in 

the determination of stresses in the medium, while from the point of view of mathematics, as 

problems of finding the unknown function (u or v) from its value at boundaries, both are 

exactly the same. 

The velocity field of the medium provides a simple example of function v in Problem B; 

the transform operator is L = aiat = -valfiz. 
Condition (1.2) has in coordinates 5, ?l the form 

2. The method of solution : reduction to the Dirichlet boundary value 
problem. Further exposition is carried out in terms of Problem A (in displacements). The 

obtained results with the substitution u -PV = Lu, u~~-+La lk are completely valid for Problem 

B. 
We introduce for each of Eqs.(l.l)its proper system of coordinates TjUjEj defined by 

the relations 

(2.1) 
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Equations (1.1) with allowance for self-similarity, i.e. independence of solutions from 
rj? in coordinates c/Et assumes the form of the Laplace equation 

(2.2) 

The method of transforming equations of elastic medium dynamics used here is similar to 
that applied by Busemann and others in problems of supersonic gasdynamics (see, e.g., /7/j. 

Vectors Uj may, therefore, be considered as the real part of some analytic vector func- 
tion with the corresponding complex variable 

Wj = &jl?Xp (iUj) (2.3) 

Using the transform with an appropriate selection of the branch in formulas (2.1), the 
initial perturbations region uj in space ryz is mapped in the complex plane ELtj onto the 
unit circle interior, _- and the blade onto the segment with ends at points Wjh = jIMj_' (v - 
t/v" - Mj2),as shown in Fig.2. 

We introduce the notation 

njk = RePjl, (Oj) (i 

where Fj,. Fj,, Fj: are functions of respective 
unit circle interior with a slit along segment 
sions (2.4) (for ujk) into (1.7) and (1.8) and 

(iC ,) ’ ) ~ _ Wj” .t- 1 
--~I~ q 

("'j)rl' 
(,,. 

, 
I -. 1 

:1,2;/c=x,y,z) (2.4) 

complex variables wl and z+analytic in the 
Im ulj - 0, 1 I<ewj j < Zt'ji,* Substituting expres- 

taking into account 

2iicj 

we obtain three conditions for the connection between six analytic 
X- = 2, y,z) of the form 

the relations 

functions 

iM, (w?' i- 1) F,,' (cu.,) + M, (w2? - 1) FQ' (wq) = 2iw,FIL' (wp) 

where the prime denotes differentiation with respect to the argument. 
Problem A is thus reduced to a boundaryvalue 

functions of 
substantially -Y -M- 3 M, y 

problem of the theory of analytic 
two complex variables that can be 
simplified whenever it is possible to determine 
the relation between these variables. 

Note that only two of the three conditions 
(1.7) are independent, hence only three independ- 
ent conditions obtained from (1.7) and (1.8)appear 

Fig.3 in (2.5). Conditions (2.5) imply that only one 
function Flh. and two functions ~~~ are independ- 
ent. 

We introduce one more pair of complex variables zj defined by the following expression 
(the Joukowski transform) : 

Fj;k (ml) (i =~ 1, 2; 

In both planes of 2) the unit circle interior which corresponds to the upper half-plane 
Wj (the perturbation region) passes into the lower half-plane ImT,<O, and the blade surface 
istransformed into two equal half-linesonthe real axis 1 ReT, 1 > y, Xmzj = 0. Moreover, the 
circle of unit radius becomes in the w, plane the segment 1 Rsrjl> M,,Imrj = 0, and the real 
axis Imwl = 0 is represented by two half-lines 1 Rez,l> M,, Imrj = 0 (see Fig.3). Con- 
sequently, all boundaries at which conditions (1.4)- (1.6) of Problem A are specified in the 
rI plane are represented by the real axis Imrj = 0, while at y = 0 (3 = 0) we have the equal- 

ity 
+* = Te = lJS for 1 Ret] 1 > y, Im ~1 = 0 (2.7) 
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Components of the total displacement vector of the medium n assume, in terms of the 
complex variables %J the fom 

% = Re iFlk hl t F2k (dl (k = x, Y, 2) (2.8) 

where Fit (zrj) are functions which by virtue of symmetry are analytic in the lower half-plane 
of 71 and are to be determined. They are linked by supplementary condition which in conform- 
ity with formulas (2.5) and (2.6) are of the form 

1/2m-_;F:l.=- iz&,, j&1a-M12F;;=&y (2.9) 

jfrpa - MsZ F&,= iz,F& - iF:; 

Components of the strain tensor (formulas (1.3)) are obtained using the following form- 
ulas: 

2eIk=Re SF’ 
C h o+ as 

..%. & + 2 F1,’ + 2 F,,’ 
I 

(2.10) 
k I 1 

s=Rei~F;,-:-~F,-i-~F;,t~F;, +sF,‘+s&;] 

In formulas (2.9) and (2.10) the arguments of functions Fix are the respective variables rj, 
and the prime denotes differentiation with respect to the argument. 

Note that for determining the relation between variables %tl and z2 when 1 Rerjl< y, IrnTt = 0 
the boundary conditions (1.5) and (1.6) assume the form 

Rep,, (TJ = ReFII, (T,) = ReF,, (a,) = 0 

ReF, (TZ) = Rel”,, (~2) = Rep,, (a*) = 0 
(2.11) 

i.e. they are zero for any r% and Z, along that segment. This can be expressed as follows. 
For any pair of zr and z2 belonging to the respective segments jRezl I<y, Imzj = 0 the 
equality 

Re [Flt&) + Fsk (~4 1 = Re fFIk (t) -t- F($K ($1 = 0 

is always satisfied. 
Since this equality is satisfied also for r = T, = TV, it is possible to extend condition 

(2.7) to the indicated segments of real axes of the "21 planes without altering boundary con- 
ditions (2.11). It is, thus, possible to assume that the condition 

'I: = z1 = z, (2.12) 

of equality of the two complex variables is satisfied at all points of real axes Irnt, - 0 and 
Xmz,=O. 

We introduce a new complex variable whose real part is the same as that of variables z1 
and zIL 

Ret = Rez, = Rez, (2.13) 

i.e. we extend condition (2.12) of r 1 t' e a ion between the two complex variables on the real 
axis to the entire lower half-plane. 

The indicated here method of reducing the determination of six functions of two complex 
variables to a boundary value problem for a function of a single complex variable, is in many 
respects similar to that used in 141 for solving several large classes of plane self-similar 
problems Of the dynamic theory of elasticity of subsonic velocities investigatedbytheauthors 
using the Smirnov-Sobolev method of functionally invariant solutions of wave equations /4,8/. 

We introduce the notation 

where vk(z)(k = 5, y, 2) are functions analytic in the lower half-plane Imz <O.In conformity 
with formulas (2.9) functions Fjk(7) are expressed in terms of V,(T) as follows: 

F,,' = - im@ IV; + ix2Yl’ - iTx,V,‘l 

P,; = D [V,’ + ix,v; - izxzV*'l (2.15) 

FIlz = ix& tV,” _t ix,V,'- iax,V,‘l 



256 A.A. Borzykh 

Iz 2Y ’ = ix,D [TV,’ - V;’ i- ix, (1 + 9) V,‘] 

PC:’ = D [(I - t%& V,’ - ixlVv’ - ~x,x,V~‘l 

xj (T) = (T” - Mj”)-“z (7 = I, Z), D (T) = [I - 

where 5 is the argument of functions v',, VU' vz, x1, x2, D, Fjk 

For the determination of function V,(T) we have three separable independent Dirichlet 
problems for a single complex variable in the half-plane Imz< 0, which in accordance with 

formulas (1.4)- (1.6), (2.7)- (2.9), and (2.11)- (2.14) are of the form 

where g, which in 

file") . 
The solution 

half plane which, 

Ret’, (T) = g, (t = UT), 1 Re z 1 > y 

r(sVk (7) = o,I Ret 1 < y (k = 5, y, 2) 

(2.16) 

conformity with (1.4) are known functions of variable E ("the blade pro- 

of each of the boundary value problems (2.16) is a Schwarz integral for the 

for example, for V,(T) is of the form /9/ 

(2.17) 

where c, is an arbitrary real constant and Re V, (l) are defined by condition (2.16). 

Expressions of form (2.17) for each of the sought functions completely solve Problem A. 
Displacements are determined by formulas (2.8) and integration of relations (2.15), while the 

stress field is obtained directly using formulas (1.3) and (2.10). 

Problem B is similarly solved using formulas (2.17), except that the field of displace- 
ment u is obtained from the solution of the boundary value problem for field v using the 
inverse transform u = ~-IV and the stress field is then determined by formulas (1.3), or the 

linear transform LcIk is directly obtained from formulas (2.10) and, then, the field of Olk 
is determined using transform L-1 

3. One boundary value problem and its applications. We shall illustrate the 

general method on the example of an important limit case of the boundary value problem (1.4)- 

(1.6). 
Let gi; (5) = 0,; (k = 5, y, E) 

where Q, +,, oI are some arbitrary real constants. In accordance with (2.17) we have 

I;h. (T) = --i (ak;X)ln I(? - T)/(T /~ r)] ; i(',, (A (1 !,. z) 

where C,, C,,,C,are arbitrary real constants. For determining stresses we use formulas (2.10). 

When 7 = o we have for functions Fit(~) in terms of variables E,? in accordance with defini- 

tions (2.15) the following expressions: 

F,,' == -2itII (a, - a,5 -t ioy/rg) (3.1) 

F,y’ :m rFl,‘h,, Fl,’ == - EF,,’ 

Flu’ = 2&I [(li,llT - 5*)a1 - ax; + ia,h,l (3.2) 

F12y' = - 2:H [a&, - /?,&a, + la&,-%, (1 + CL)1 

F.,' == -Z&Y[u,E - a3 (h,h, - 1) i- ~a&,]; 1 f 1 < Mz-’ 

F,’ = Fz,,) = F,,’ = 0, Jf2’<15l<~~f,’ (3.3) 
hj = Jr1 - njj'y, H = (Jq' - I)_' (h,h, - 1 - p)-' (j = 1, 2) 

and for the derivatives of complex variables T) in terms of coordinates 2, Y, 2 and 11 c we 

have 
(3.4) 

The set of Eqs.(3.1)- (3.4) enables us to determine the stress field using formulas (3.1) 

-_(3.4). Omitting the formulas for all of the nine components cikr which are readily obtained 

from (3.1)- (3.4), we present expressions for the first invariant of the stress tensor for 

(rl =m 0) 

(3.5) 

(3.6) 

Let us point out certain singularities of the obtained results. 
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The stress field in region Ee+n2<Mz-P of existence of transverse and longitudinalwaves 
is determined only by the normal displacement 0" at the slit, i.e. the problem of arbitrary 
displacement discontinuity at the supersonic slit can be considered, without loss of general- 
ity, in this region as a problem of normal discontinuity. 

In the neighborhood of points IEl= l/y,1 El= i/M, and ItI= i/M, the stress field has sing- 
ularities. The asymptotics of the stress field are indicated below. For the invariant I, 
we have 

I 
1 
= (2p+3h)a,m Iv'- M,"-k (I+ v') l/yZ--Mzal 

pz [v(y" - MI*) (y2 - M,*) - y* - I] 
(3.7) 

As was to be expected, the singularity of stresses (3.7) is of order i/p. i.e. the same 
as that near the edge of the subsonic dislocation discontinuity /1,4/. Near the boundaries 
of perturbation regions (Mach fronts) we have 

I, = a&?, (Ml8 - Ma*) vc, p = 1 - M& - $0 

I, = M,R, (1 + MAv/M? - M,2(al- Q/M, - a,J&)vp p=M&- 1- +0 

I, = &~MI~-- Ml% (a,M,-aa,-aa,1/M,2 - Mnf/p. p = 1 - M,k - + 0 

(3.3) 

Rj = 
2v/Z(2~+3h) Mj3 

z(ye-Mj*)(i+MjP) (f=‘v2) 

All results of Sect.3 equally apply to problem B with the substitution Olk - Lolk taken 
into account. In the important case of operator L = -vaiaz (the problem of uniform velocit- 
ies of the medium), similar to the plane problem considered in /2/, we find that near the 
blade edge the stresses obtained by applying the inverse operator ~-1 to expressions in (3.7) 
and (3.8) have singularities of order In (2 + Y Ix I). 

The author thanks G.P. Cherepanov for numerous remarks expressed in the course of prepar- 
ation of this paper. 
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